Can we really prevent food fraud and safety incidents from happening?

Predictive analytics are so cool.

Nowadays, you can find their application in many sectors, for many critical business decisions. Everyone seems to be discussing the so-called ‘Prediction Machines’ that promises to enhance any type of software system with cheap and easy-to-use AI algorithmic power.

Of course, predictive analytics are also a hot topic in the food sector, especially in terms of food safety challenges – I’ve witnessed some heated discussions. Governments and regulators have started paying closer attention to it as well.

For instance, the US FDA is dedicating a core part of its digital strategy to exploring how to advance the agency’s predictive capabilities. AI and machine learning tools are expected to enable the mining of a large volume of heterogeneous data and therefore, help to anticipate and mitigate foodborne risks.

1_0.jpg

You may be wondering:

What does the food industry think about this technology?

2_0.jpgLet me share what a colleague from a large European food manufacturer recently told me:

“There are so many predictive analytics solutions out there, but they’re still looking for a problem to solve.”

If you think they sound skeptical, you are right.

People working in the food industry hear about A New Amazing Tech That Will Change Your Life very often – maybe too often.

Colleagues working for food manufacturers and retailers have approached me, wondering whether predictive analytics can really help them in food safety incident prevention. They want to transform how they choose and prioritize preventive measures.

They wonder if AI-powered tools can help predict food risks before they occur.

Very often, they are rather suspicious that this concept might evolve into yet another overrated technology hype. Many say that early proofs of concept have proven to be ineffective and costly in terms of in-house efforts. Others seem particularly cautious about whether they should invest in such technologies, especially in times of a global recession and reduced budgets.

We wanted to better understand what the food industry thinks about predictive analytics.

So, we asked.

Luckily enough, over the past few months, we have been exploring the applicability and value of predictive analytics in food integrity scenarios. We are currently working on this project with three prestigious partners: the team consists of Prof. Chris Elliott from Queen’s University of Belfast, the food authenticity testing startup Bia Analytical Ltd., and the scientific modeling & data analytics leader Creme Global.

In the context of this collaboration, we have set up an Industry Innovation Group on Predictive Analytics for Food Integrity. This is an informal group of industry experts that are interested in following the partnership’s work, participating in shaping requirements, and learning how predictive analytics could work for ingredients and raw materials of high importance to their work. As of today, they come from over 20 companies of different types and sizes.

We asked this group a very simple, but important question: “What is your experience with predictive analytics?”

Their response was extremely interesting:

Almost 45% said that they have heard and read a lot about predictive analytics, but they haven’t tried it yet.

3.jpgWe see tremendous value in enhancing the predictive capabilities of food risk assessment and prevention. We also believe that there is an untapped potential in the way that AI-powered prediction machines can help us anticipate and mitigate food risks.

On the other hand, training, deploying, and operating a reliable predictive analytics solution for food safety is not as simple as it may initially seem.

What we hear from the industry is that companies want to give this technology a serious chance. They are already devoting a significant budget to it as they know it will lead to better decision making and competitive advantage. They do not have time to experiment with immature, incomplete solutions that have no clear objectives.

Reliable, consistent, well thought out tools and services will support people in existing tasks and decision making. Helping them save time, prevent risks, and manage resources effectively.

Solutions that can work next to the human experts, learn from their mistakes, improve their decisions, and support recommendations.

Simply put: predictive analytics solutions that solve real food safety challenges.

As a food safety & quality assurance professional, you can access Agroknow’s predictive analytics solutions by creating a 6 weeks free fully-featured FOODAKAI user account and explore how predictive analytics work for ingredients and raw materials of high importance for your own supply chain.